
Distilling Word Embeddings: An Encoding Approach

Lili Mou, Ran Jia, Yan Xu, Ge Li,∗ Lu Zhang, Zhi Jin∗
Key Laboratory of High Condence Software Technologies (Peking University), MoE, China

Institute of Software, Peking University, China ∗Corresponding authors
{doublepower.mou, jiaran1994}@gmail.com

{xuyan14, lige, zhanglu, zhijin}@sei.pku.edu.cn

ABSTRACT
Distilling knowledge from a well-trained cumbersome net-
work to a small one has recently become a new research
topic, as lightweight neural networks with high performance
are particularly in need in various resource-restricted sys-
tems. This paper addresses the problem of distilling word
embeddings for NLP tasks. We propose an encoding ap-
proach to distill task-specific knowledge from a set of high-
dimensional embeddings, so that we can reduce model com-
plexity by a large margin as well as retain high accuracy,
achieving a good compromise between efficiency and perfor-
mance. Experiments reveal the phenomenon that distilling
knowledge from cumbersome embeddings is better than di-
rectly training neural networks with small embeddings.

Keywords
Model compression; neural networks; word embeddings

1. INTRODUCTION
Distilling knowledge from a neural network—that is, trans-

ferring valuable knowledge from a cumbersome network to
a lightweight one—is pioneered by Buciluǎ et al. [3]; it has
attracted increasing attention over the last two years [7, 5].

As addressed by Hinton et al. [7], the objective of train-
ing networks is probably different from deploying networks:
during training we focus on extracting as much knowledge
as possible from a large dataset, whereas deploying net-
works takes into consideration multiple aspects, including
accuracy, memory, time, and energy consumption. It would
be appealing if we can first well train a cumbersome net-
work offline, and then distill its knowledge to a small one
for deployment. The aim of knowledge distillation is thus
to reduce model complexity as well as to retain high perfor-
mance, which is particularly important to neural networks’
applications in resource-restricted scenarios, e.g., real-time
systems, mobile devices, and large ensembles of models.

Much evidence in the literature shows the feasibility of
transferring knowledge from one neural network to another,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CIKM’16 , October 24-28, 2016, Indianapolis, IN, USA
c© 2016 ACM. ISBN 978-1-4503-4073-1/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2983323.2983888

for instance, from shallow networks to deep ones [11], from
feed-forward networks to recurrent ones [12], or vice versa [1,
4]. The main idea of the above studies is to train a teacher
model first, and then use the teacher model’s output (esti-
mated probabilities by softmax, say, in a classification prob-
lem) to guide a student model. Several variants of train-
ing objectives include applying regression over the input
of softmax [1] and softening the teacher model’s probabil-
ities [7]. We call such approaches “matching softmax” (Fig-
ure 1a). It is also argued that the estimated probabilities by
a teacher model convey more information than one-hot rep-
resented ground truth; hence knowledge distillation is feasi-
ble and beneficial [7].

Despite the above generic approach, this paper focuses
on distilling word embeddings in NLP applications. Par-
ticularly, we find the specificity of embeddings brings new
opportunities for knowledge distillation.

As word embeddings map discrete words to distributed,
real-valued vectors, it can be viewed that a word is first rep-
resented as a one-hot vector and then the vector is multi-
plied by a large embedding matrix, known as a look-up table.
During the matrix-vector multiplication, one and only one
column in the look-up table is verbatim retrieved for a par-
ticular word. Thus, we may build an interlayer—sandwiched
between the high-dimensional embeddings and the ensuing
network—to squash embeddings to a low-dimensional space
(Figure 1b). The standard cross-entropy loss can then be
applied to train the encoding layer and other parameters
in the network. In such a supervised manner, task-specific
knowledge in the original cumbersome embeddings can be
distilled to low-dimensional ones.

In summary, the main contributions of this paper are
three-fold: (1) We address the problem of distilling word
embeddings in NLP applications. (2) We propose a super-
vised encoding approach to distill task-specific knowledge
from cumbersome word embeddings. (3) Our experimental
results in sentiment analysis and relation classification tasks
reveal a phenomenon that distilling low-dimensional embed-
dings from large ones is better than directly training a net-
work with small embeddings. It should also be noticed that
the proposed encoding approach does not rely on a teacher
model; our method is complementary to existing matching
softmax for knowledge distillation.

2. BACKGROUND OF MATCHING SOFT-
MAX

As said, existing approaches to knowledge transfer be-
tween two neural networks mainly follow a two-step strat-

1977

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2983323.2983888&domain=pdf&date_stamp=2016-10-24

Cumbersome
neural network

Large embeddings

Small
 network

Small embeddings

softmax softmax

Large embeddings

Small
 network

Small embeddings

softmax

(a) Distilling by matching softmax (b)

Distilling by
encoding

Teacher network Student network
 (Distilled model)

Distilled model

Figure 1: Distilling knowledge by (a) matching softmax, and (b) encoding embeddings.

egy: first training a teacher network; then using the teacher
network to guide a student model by matching softmax, de-
picted in Figure 1a.

For a classification problem, softmax is typically used as
the output layer’s activation function. Let z ∈ Rnc be the
input of softmax. (nc is the number of classes.) The output
of softmax is

yi =
ezi/T∑nc
j=1 e

zj/T

where T is a relaxation variable (used later), called temper-
ature. T = 1 for standard softmax.

Take a 3-way classification problem as an example. If
a teacher model estimates y = (0.95, 0.04, 0.01)> for three
classes, it is valuable information to the student model that
Class 2 is more similar to Class 1 than Class 3 to Class 1.

However, directly imposing constraints on the output of
softmax may be ineffective: the difference between 0.04 and
0.01 is too small. Ba et al. [1] match the input of softmax,
z, rather than y. Hinton et al. [7] raise the temperature
T during training, which makes the estimated probabilities
softer over different classes. The temperature of 3, for in-
stance, softens the above y to (0.64, 0.22, 0.14)>. Match-
ing softmax can also be applied along with standard cross-
entropy loss (with one-hot ground truth), or more elabo-
rately, the teacher model’s effect declines in an annealing
fashion when the student model is more aware of data [11].

3. THE PROPOSED ENCODING APPROACH
FOR DISTILLING EMBEDDINGS

This section introduces in detail our proposed method for
word embedding distillation (Figure 1b). We also analyze
the neural network’s model capacity with distilled embed-
dings, and discuss the rationale for distilling small embed-
dings from large ones in a supervised manner, instead of
directly training with small embeddings.

Word embeddings are a standard component for neural
natural language processing. As feeding word indexes di-
rectly to neural networks is somewhat nonsensical, words
are mapped to a real-valued vector, called embeddings, where
each dimension captures a certain aspect of underlying word
semantics. Usually, they are trained in an unsupervised fash-
ion, e.g., maximizing the probability of a large corpus [2, 9],
or maximizing a scoring function [6, 8]. The learned embed-

dings can be fed to standard neural networks for supervised
learning, e.g., POS tagging, named entity recognition, and
semantic role labeling [6].

To formalize word embeddings in algebraic notations, we
let xi ∈ R|V | be one-hot representation of the i-th word xi

in the vocabulary V ; the i-th element in the vector xi is
on, with other elements being 0. Let Φc ∈ Rnembed×|V | be a
(cumbersome) embedding matrix (look-up table). Then the
vector representation of the word is exactly the i-th column
of the matrix, given by Φc · xi.

Now we consider distilling, from cumbersome embeddings
Φc · xi, an ndistill-dimensional vector for the word, where
ndistill is smaller than nembed. It is accomplished by encoding
with a non-linear neural layer, i.e.,

vec(xi) = f(Wencode · Φcxi + bencode) (1)

where Wencode ∈ Rndistill×nembed and bencode ∈ Rndistill are
parameters of the encoding layer; vec(·) denotes the distilled
vector representation of a word.

These distilled embeddings can then be fed to a neural
network (with parameters Θ) for further processing. Let m
be the number of data samples and nc be the number of
target classes; suppose further y(j) is the output of softmax
for the j-th data sample and t(j) the one-hot represented
ground truth. Our training objective is the standard cross-
entropy loss, given by

minimize
Wencode,bencode,Θ,Φ

−
m∑

j=1

nc∑
i=1

t
(j)
i log y

(j)
i

We would like to point out that distilling embeddings does
not increase, or in fact may reduce, model capacity vis-à-vis
directly training with small embeddings, despite the large
number of parameters in cumbersome embeddings and the
coding layer’s weights.

Theorem 1. The model capacity of a neural network with
distilled embeddings is less than or equal to that of a neural
network trained directly with small embeddings.

Proof. The intuition is straightforward: small embeddings
are free parameters which are not constrained, whereas the
distilled embeddings are subject to the form in Equation 1.
Formally, let Hd,Hs be the hypothesis classes of networks
with distilled/small embeddings, respectively. For each hd ∈
Hd with cumbersome embeddings Φc and encoding parame-

1978

ters Wencode, bencode, there exists a hypothesis hs ∈ Hs, sat-
isfying that hs = hd with small embeddings Φs, whose ith

column (the small embedding for ith word) is f(WencodeΦcxi

+bencode). Hence, Hd ⊆ Hs. N

A curious question is then why distilling embeddings may
help, compared with directly training the neural network
with small embeddings. We provide an intuitive explanation
as follows.

Since word embeddings are typically learned from a large
corpus in an unsupervised manner, the knowledge in em-
beddings is restrained by dimensionality. For example, the
sentiment of a word is of secondary importance compared
with its syntactic functionality in a sentence. Hence, senti-
ment information might be lost in low-dimensional embed-
dings, which is unfavorable in a sentiment analysis task. On
the contrary, large embeddings have the capacity to capture
different aspects of word semantics. The proposed super-
vised encoding approach may then distill task-specific (e.g.,
sentiment) knowledge to a small space, while eliminating ir-
relevant information. Therefore, we may reasonably expect
that distilling embeddings would outperform direct use of
small ones.

Deployment Issues
Before deploying the model, we shall precompute the dis-
tilled embeddings, vec(·), according to Equation 1 after train-
ing all parameters. The original embeddings Φcx and en-
coding parameters (Wencode and bencode) can then be safely
discarded, and we obtain a small model (dashed rectangle
in Figure 1b) with a set of small embeddings, which are
distilled from large ones.

As we shall see in the experiments, the small model will
be very computational efficient because we have reduced a
large number of parameters.

4. EVALUATION
In this section, we present our experimental results. We

first describe the testbed and protocol of our experiments in
Subsection 4.1. Then we analyze in Subsection 4.2 the per-
formance of our approach regarding several aspects, namely
accuracy, memory, and time consumption.

4.1 Tasks, Models, and Protocols
We tested our distilling approach in two tasks: sentiment

analysis and relation classification.
The sentiment analysis task aims to classify a sentence

into 5 categories according to its sentiment: strongly/weakly
positive/negative and neural. We used Stanford Sentiment
Treebank1 as our dataset, which contains 8544/1101/221
sentences for training, validation, and testing. Phrases (sub-
sentences) in the training set are also labeled with sentiment,
enriching the training set to more than 150k samples. For
validation and testing, only the sentiment of a whole sen-
tence was considered.

The second task is to classify the relation between two
tagged entities in a sentence. The SemEval 2010 dataset,2

we used, comprises 8000 training samples, from which we
split 10% for validation; there are additional 3000 samples
for testing. Target labels include 9 directed relations (e.g.

1http://nlp.stanford.edu/sentiment/
2http://semeval2.fbk.eu/semeval2.php?location=data

Task Method Acc. #Param Time

Sentiment
analysis
by TBCNN

Cumbersome embed. 51.6 6.9M 1x
Small embed. 46.4

0.94M
(0.14x)

0.04xDistilled embed. 47.5
Matching softmax 45.8

Table 1: Comparison between cumbersome embed-
dings, small embeddings, matching softmax, and dis-
tilled embeddings. The official measure is accuracy
(acc.) in percentage.

Task Method F1 #Param Time

Relation
classification
by SDP-LSTM

Cumbersome embed. 82.1 8.8M 1x
Small embed. 79.0

1.3M
(0.15x)

0.04x
Distilled embed. 79.4
Matching softmax 80.1
Hybrid 80.2

Table 2: Comparison between cumbersome embed-
dings, small embeddings, matching softmax, and dis-
tilled embeddings. We further made an attempt
to combine matching softmax and distilling embed-
dings (denoted as “Hybrid”). The official measure
for relation classification is the F1-score.

Component-Whole) plus a default Other; in total, we have
19 classes. The official F1-score was applied as our measure-
ment.

To set up our experiments, we leveraged two state-of-the-
art neural models: a tree-based convolutional neural net-
work (TBCNN) for sentiment analysis [10], and a long short
term memory-based recurrent network along shortest depen-
dency path (SDP-LSTM)3 between two entities for relation
classification [13].

For each task, we evaluated our proposed methods by dis-
tilling 300-dimensional embeddings to 50 dimensions, fur-
ther processed by a thin network (also 50d). In comparison,
we trained the 50d network directly with small 50d embed-
dings. All models were trained by mini-batch gradient de-
scent with back-propagation. For both settings of distilling
and non-distilling, we tried extensive configurations of hy-
perparameters, mainly following the original papers.4 After
choosing the setting with the highest validation accuracy,
we ran each model 5 times for smoothing with different ran-
dom initializations, and report the average test accuracy or
F1-score.

4.2 Results
Tables 1 and 2 presents the results of our proposed model

as well as two competing settings: training a wider network
with cumbersome embeddings, and directly training a thin
network with small embeddings.

In both experiments, cumbersome embeddings yield the
highest performance, the distilled embeddings rank second,
and small embeddings are worst. Basically, our method out-
performs direct training of a small network by a margin of
approximately one standard deviation (std = 1.1 and 0.6, re-

3We only used word embeddings, and ignored other features
like hyponymy, dependency types, which were used in [13].
In this way, we focus on the problem of embedding distilla-
tion itself.
4Due to the limitation of space, we list candidate configura-
tions on our website:
https://sites.google.com/site/distillembeddings/

1979

spectively). As the results were obtained by averaging over
5 initializations, we deem the improvement is fair.

Regarding model complexity, our distilled embeddings re-
duce memory and time to a large extent to 14–15% and 4%,
respectively (C++ implementation on a single CPU). There-
fore, the resulting network is significantly more lightweight,
which is helpful to deployment in neural networks’ applica-
tions.

To further test our method under extreme conditions, we
distilled word embeddings to 10d and 30d. We chose to con-
duct the experiments in the second task, because it is of
lower variance. As demonstrated in Figure 2, our method
consistently outperforms direct training with small embed-
dings in all scenarios; moreover, the margin increases when
the dimension becomes small. Such result is consistent with
our human intuition, and verifies the conjecture in Section
3—small embeddings contain less knowledge specific to the
task of interest; the proposed supervised encoding approach
can distill task-specific knowledge from large embeddings.

We also notice that our approach is, in fact, complemen-
tary to existing matching softmax methods: the encoding
layer distills task-specific knowledge from large embeddings
in a bottom-up fashion, whereas matching softmax distills
generic knowledge in a top-down fashion.

In both tasks, we also tried the matching softmax ap-
proach, whose settings and hyperparameters are mainly de-
rived from [7], i.e., T = 2 and a 1:1 mixture of ground truth
and the teacher model’s output. Its performance is not con-
sistent: in the sentiment analysis task, matching softmax
hurts the performance by 0.6%, whereas it improves the re-
lation classification task by 1.1%. (See Tables 1 and 2 again.)
One plausible explanation is that the teacher model itself has
not achieved remarkable accuracy (only about 50%) in the
5-way sentiment classification task. Using a teacher model
introduces additional knowledge as well as errors. If the
latter dominates, matching softmax may hurt the student
model. However, our encoding approach to embedding dis-
tillation does not reply on a teacher model. Combined with
matching softmax, it improves another 0.1% (although may
not be large) in the second experiment, showing that the
two methods can be potentially combined, as they are com-
plementary to each other.

5. CONCLUSION
In this paper, we addressed the problem of distilling em-

beddings for NLP, which is important when deploying a neu-
ral network in resource-restricted scenarios. We proposed
an encoding approach that distills cumbersome word em-
beddings to a low dimensional space. Experimental results
have shown the superiority of our proposed distilling method
to training neural networks directly with small embeddings;
that the performance gain increases significantly especially
when the dimension becomes small. Moreover, our approach
does not reply on a teacher model, which is complementary
to matching softmax; these two methods of knowledge dis-
tillation could also be combined.

6. ACKNOWLEDGMENTS
We thank all reviewers for their insightful comments and

Rui Yan for discussion of the manuscript. This research is
supported by the National Basic Research Program of China
(the 973 Program) under Grant No. 2015CB352201 and the

Figure 2: Accuracy versus dimension in the experi-
ment of relation classification.

National Natural Science Foundation of China under Grant
Nos. 61232015, 91318301, 61421091, and 61502014.

7. REFERENCES
[1] J. Ba and R. Caruana. Do deep nets really need to be

deep? In NIPS, pages 2654–2662, 2014.

[2] Y. Bengio, R. Ducharme, P. Vincent, and C. Janvin.
A neural probabilistic language model. JMLR,
3:1137–1155, 2003.

[3] C. Buciluǎ, R. Caruana, and A. Niculescu-Mizil.
Model compression. In SIGKDD, pages 535–541, 2006.

[4] W. Chan, N. R. Ke, and I. Lane. Transferring
knowledge from a RNN to a DNN. arXiv:1504.01483,
2015.

[5] W. Chen, J. T. Wilson, S. Tyree, K. Q. Weinberger,
and Y. Chen. Compressing neural networks with the
hashing trick. In ICML, pages 2285–2294, 2015.

[6] R. Collobert and J. Weston. A unified architecture for
natural language processing: Deep neural networks
with multitask learning. In ICML, pages 160–167,
2008.

[7] G. Hinton, O. Vinyals, and J. Dean. Distilling the
knowledge in a neural network. arXiv:1503.02531,
2014.

[8] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and
J. Dean. Distributed representations of words and
phrases and their compositionality. In NIPS, pages
3111–3119, 2013.

[9] F. Morin and Y. Bengio. Hierarchical probabilistic
neural network language model. In AISTAT, pages
246–252, 2005.

[10] L. Mou, H. Peng, G. Li, Y. Xu, L. Zhang, and Z. Jin.
Discriminative neural sentence modeling by tree-based
convolution. In EMNLP, pages 2315–2325, 2015.

[11] A. Romero, N. Ballas, S. E. Kahou, A. Chassang,
C. Gatta, and Y. Bengio. FitNets: Hints for thin deep
nets. In ICLR, 2014.

[12] D. Wang, C. Liu, Z. Tang, Z. Zhang, and M. Zhao.
Recurrent neural network training with dark
knowledge transfer. arXiv:1505.04630, 2015.

[13] Y. Xu, L. Mou, G. Li, Y. Chen, H. Peng, and Z. Jin.
Classifying relations via long short term memory
networks along shortest dependency paths. In
EMNLP, pages 1785–1794, 2015.

1980

